Fusion of Cardiac Computed Tomography Angiography (CTA) and 18F-Fluorodesoxyglucose Positron Emission Tomography (FDG-PET) to Determine Normal Peri-annular FDG Uptake after Aortic Valve Implantation

Published: 02-04-2013 Last updated: 24-04-2024

To determine normal FDG-uptake around PHV*s in aortic position.

Ethical review Approved WMO

Status Recruiting

Health condition type Cardiac valve disorders **Study type** Observational invasive

Summary

ID

NL-OMON43910

Source

ToetsingOnline

Brief title

PROSPECTA

Condition

Cardiac valve disorders

Synonym

endocarditis, prosthetic heart valve

Research involving

Human

Sponsors and support

Primary sponsor: Universitair Medisch Centrum Utrecht

Source(s) of monetary or material Support: Ministerie van OC&W

Intervention

Keyword: Aortic Prosthetic Heart Valve, Computed Tomography Angiography, endocarditis, Fluorodesoxyglucose/Posotron Emission Tomography

Outcome measures

Primary outcome

18F-FDG/PET baseline uptake measured by the QVSH value and the SUV ratio*s around the PHV in early, late and possibly also in the chronic postoperative phase: $5 (\pm 1)$ weeks, $12 (\pm 2)$ weeks and $12 (\pm 2)$ months respectively.

Secondary outcome

- Feasibility of hybrid fusion (diagnostic CTA and PET): percentage of patients for which it is possible to fuse FDG-PET images and cardiac CTA images
- Artefacts (region, extend and type and location) during assessment with FDG-PET/CTA will be described

Study description

Background summary

Prosthetic Heart Valve (PHV) endocarditis is complicated by peri-annular extension (abscesses/mycotic aneurysms) in up to 50% of patients and has an in-hospital mortality of approximately 30%. However, with current standard imaging tools such as Echocardiography and Computed Tomography Angiography (CTA), it remains difficult to detect peri-annular extension, which is an indication for urgent surgery in order to reduce mortality. Furthermore, if

peri-annular abnormalities are found with imaging, differentiation between active and non-active inflammatory tissue is impossible, because of the lack of metabolic information. Hybrid imaging with combined anatomical information by CTA and metabolic information by FDG-PET may provide this additional information. However, normal baseline FDG uptake at different time points after aortic PHV implantation is unknown and obligatory for correct interpretation of CTA/PET scans in PHV patients.

Study objective

To determine normal FDG-uptake around PHV*s in aortic position.

Study design

Prospective multicentre cross-sectional study. Included patients receive one 18-F FDG-PET/CTA after implantation of a PHV in aortic position. There is no control group or follow-up. Only 18-F FDG-PET/CTA results will be used for data analysis.

Study burden and risks

Risk: Prospectively ECG-triggered CTA and FDG-PET exposes the patient to a combined maximum radiation dose of 10.0 milli Sievert (mSv) which is approximately 4-5 times the annual natural background radiation. The risk of contrast-induced nephropathy (CIN) is minimal because of exclusion of patients with diminished renal function. In addition the risk of contrast media induced severe acute general reactions is 0.04% per patient. Co-incidental findings with FDG-PET and CTA are reduced to a minimum, because only the region of the heart/aortic root with PHV is scanned. In case of a co-incidental finding patients are informed and if needed further investigation is offered Benefit: Asymptomatic postoperative PHV dysfunction may be detected in an early stage. Ascertaining the normal pattern of metabolic activity with FDG-PET surrounding PHVs will be of added value in the future evaluation of individual patients in this study and possibly for all FDG-PET studies performed worldwide on other patients with PHVs.

Contacts

Public

Universitair Medisch Centrum Utrecht

Heidelberglaan 100 Utrecht 3584 CX NL

Scientific

Universitair Medisch Centrum Utrecht

Heidelberglaan 100 Utrecht 3584 CX NL

Trial sites

Listed location countries

Netherlands

Eligibility criteria

Age

Adults (18-64 years) Elderly (65 years and older)

Inclusion criteria

- age > 50 years
- patients after uncomplicated PHV implantation
- Normal routine follow-up TTE
- 5 weeks or 12 weeks or 12 months after PHV implantation
- weight < 110 kg

Exclusion criteria

- Known contrast allergy
- Known renal impairment (GFR<60)
- Other contraindications for contrast use according the standard daily clinical routine
- Use of pericardial patches and re-operation of aortic PHV in past medical history
- Contraindication for Computed Tomography Angiography according the standard daily clinical routine

Study design

Design

Study type: Observational invasive

Masking: Open (masking not used)

Control: Uncontrolled

Primary purpose: Diagnostic

Recruitment

NL

Recruitment status: Recruiting
Start date (anticipated): 30-05-2013

Enrollment: 75

Type: Actual

Ethics review

Approved WMO

Date: 02-04-2013

Application type: First submission

Review commission: METC Universitair Medisch Centrum Utrecht (Utrecht)

Approved WMO

Date: 12-01-2017
Application type: Amendment

Review commission: METC Universitair Medisch Centrum Utrecht (Utrecht)

Study registrations

Followed up by the following (possibly more current) registration

No registrations found.

Other (possibly less up-to-date) registrations in this register

No registrations found.

In other registers

Register

 CCMO

Other

ID

NL42743.041.12

nnb